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Abstract—For a class of nonlinearly elastic materials, which is large enough to include all isotropic
materials, the condition of strong ellipticity is shown to be equivalent ar certain special states of
Strain to strengthened forms of the tension-extension inequalitics and the Baker-Ericksen
inequalities. We discuss the application of these latter inequalities to the semi-invertibility problem
of Truesdell and Moon, to the stability of states of hydrostatic pressure, and to the problem of
determining the strain produced by a simple tension.

1. INTRODUCTION

In finite elasticity an a priori constitutive inequality is an inequality constraint on the stress
(or strain-energy) response function laid down so as to delimit certain classes of physically
significant strains and/or to ensure some notion of physically natural material response.
Among the oldest and most plausible a priori inequalities are the condition of strong
ellipticity and, for isotropic materials, the Baker—Ericksen and the tension-extension
inequalities. For isotropic elastic materials it has been long known that these three
inequalities are not independent: the first, in fact, implies the second and (even a certain
strengthened form of) the third.

In the present work, I formulate certain strengthened forms of the Baker—Ericksen and
the tension—-extension inequalities for a class of materials more general than isotropic, and
I show that these new inequalities are still implied by the condition of strong ellipticity.
More interesting is the fact that these strengthened forms of the Baker-Ericksen and
tension—extension inequalities also imply the condition of strong ellipticity at certain
special states of strain, and hence, by a continuity argument, they imply strong ellipticity
in an entire neighborhood of these particular strains.

The strengthened Baker—Ericksen inequalities, which, as we say, are implied by the
condition of strong ellipicity, turn out to be precisely the ingredient necessary to settle the
semi-invertibility problem for stress and strain formulated by Truesdell and Moon[3]. In
the section on applications 1 demonstrate this, and 1 also remark briefly on particular
implications these Baker-Ericksen inequalities have both for the stability of certain states
of hydrostatic pressure considered by Varley and Day[4] and for those states of strain,
studied by Batra[5] for isotropic materials, which are produced by a simple tension.

2. ELASTIC MATERIALS AND STRONG ELLIPTICITY

Let 4 be a body and suppose that the material comprising 4 is elastic at some particle
Xe®. Then, relative to any fixed (reference configuration) x, there is for X a response
function T,(*) such that the (symmetric) Cauchy stress tensor T at X is given by

T =T.(F), 1

where F is the deformation gradient at X relative to x. Denoting by T the set of all tensors
(i.e. linear transformations) mapping a three dimensional inner product space V into itself,

tPortions of this work were presented at the 17th Midwestern Mechanics Conference in May 1981.

1A thorough survey of such inequalities up to 1965 may be found in the treatise[1}. The textbook{2] presents
work up to 1973,
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we note that the domain D, of T,(-) is some opent subsct of the invertible tensors in T.
We will suppose that T,(-) is twice continuously differentiable on D,.

Let 0* denote the set of proper orthogonal tensors in 7. We suppose that the response
of the material at X is indifferent to superimposed rigid motions, and hence T,(-) must meet

T(QF)= QT (F)Q” VvQe0* VFeD,. (2)

Note that (2) constitutes a tacit restriction on the domain D,, since now we must have
0'D,c D,. Morcover, if we take Q in (2) to be given by Q = Q(7) = exp(W1), W skew,
then differentiation of (2) with respect to 7 at t =0 gives that at each FeD,

oy T(F)[WF] = WT(F) - T(F)W A3)

for every skew tensor W.

Let a®b denote the tensor product between any two vectors a and b in V. We say that
T,() is strongly elliptic at FeD, if

T (F){a®bF]-a®b > 0 4

for all unit vectors a and b in V. By use of (2) it may be shown that T, (*) is strongly elliptic
at F if and only if T,() is strongly elliptic at QF for all Qe0*. Moreover, by use of (3)
and the symmetry of T, one may easily show that T,(*) is strongly elliptic at F if and only
if

% T (F)[(a®b + bR2a)F](a®b + b@a) + T,(F)-(b&®b — a®a) > 0

for all unit vectors a and b. If we interchange a and b in this last, we thus see that strong
ellipticity at F for T, (*) is the requirement that

%0,-T, (F))(a®b + b@a)F]-(a®b + b®a) > |T,(F)-(a®@a — b®b)| >0 &)

for all choices of unit vectors a and b in V, i.e.

% T (F)[a®b + bRa)F]-(a®b + b®a)

is always strictly greater than the absolute value of the difference between the normal stress
a-T(F)a and b'T,(F)b. For brevity, we will often refer to (4) and/or (5) as the “S-E
inequality™.

While the reader should consult {1, 2] for a thorough study of the physical implications
of the S—E inequality, it is useful to recall that, as the name suggests, the S-E inequality
is necessary and sufficient for the strong ellipticity at F of the differential equations of
equilibrium for #; additionally, the weakened S-E inequality at F (i.e. (4) and (5) with
“> ” replaced by ““ > ) is a necessary condition for the Hadamard infinitesimal stability
of any deformation field having F as one of its values. Further, as Gurtin and Spector(6]
have shown, if x is a homogeneous reference configuration for a homogeneous elastic
body, then the S-E inequality at 1 for T,(:) is sufficient for the existence of a neighborhood
of deformations about the identity map, 1(*): k —x, all of which are uniformly Hadamard
stable} with respect to processes which leave the boundary of x fixed. Finally, for elastic

+With tr(-) denoting the usual trace operator on T, we make T an inner product space by setting A - B = tr AB7
forAand Bin T.
$See [6] for precise definitions.
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materials that possess a strain energy, the S-E inequality is necessary and sufficient for the
squared wave speeds to be positive for every direction of propagation.t

Of the various a priori inequalities in finite elasticity, the S—E inequality is one of the
more commonly used to delimit physically reasonable deformation states F and/or
response functions T,(-). As a necessary condition on the physically reasonable (e.g.
statically realizable) deformations in solid materials, the S-E (or weakened S-E) inequality
certainly seems appropriate; that it alone, however, is not sufficient to completely delimit
the class of such deformations is suggested by the analysis in {1, 2]. Additionally, the
note[9] demonstrates that rather queer, unrealistic, elastic materials can satisfy the S-E
inequality (as well as certain other a priori inequalities) over a large class of deformation
gradients F. It is, however, the plausible necessity of strong ellipticity for realistic behavior,
rather than its unfortunate insufficiency, that engages us here. Specifically, we seck
necessary and sufficient conditions for the S-E inequality to hold at certain states of strain
in a broad class of elastic materials.}

3. ELASTIC MATERIALS OF COAXIAL TYPE

Lect B = FF™ be the (positive definite and symmetric) left Cauchy-Green strain tensor for
the deformation gradient F. The elastic material at X e # will be said to be of coaxial type
if, for some reference configuration x, the stress T,(F) commutes with B at each FeD,, i.e.

T(F)B = BT(F) V FeD,. (6)

We say then that the strain B=FF” and the stress T =T (F) are coaxial, and, as is
well-known, the coaxiality of B and T is equivalent to their sharing a common, orthonormal
basis of eigenvectors, say ¢, =¢(F), i = 1,2, 3.

We note that the condition (6) is consistent with the material’s indifference to super-
imposed rigid motions as embodied in (2) in the sense that, if (6) holds for even a single
FeD,, it will then by (2) hold automatically for all QF, Q€0 *. We also note that (6) depends
in an essential way on the underlying reference configuration x—if (6) holds for a given
reference configuration x, it will generally fail to hold for an arbitrary second reference
configuration £ However, since Ty(-) = T,((-)G) where G is the gradient at X of the
deformation from x to K, it is easy to see that if (6) holds for x then (6) will also hold for
K provided G = 2R, R orthogonal and a # 0. In particular, the property (6) is unchanged
by a dilatation G = a1 of the reference configuration. By analogy with isotropic materials
(see below), we will call a configuration x such that (6) holds undistorted ( at the particle X').

Isotropic elastic materials provide a major special case of materials of coaxial type since
for an isotropic material there are reference configurations x (called undistorted) such that

T = T(F) = Ny(B)I + N(B)B + Ny(B)B’,

where the functions N(-), defined on a subset of the positive definite, symmetric tensors, are
isotropic. While it is easily verified that isotropic materials satisfy (6), we note that they are
but a special case of those materials of coaxial type for which

T = T(F) = My(F)1 + M\(F)B + M,(F)B’, ™
where, to satisfy (2), we suppose the functions M,(-) to satisfy M,(QF) = M,(F) forall Qe0*

tin addition to (I, 2], mention should be made here of the work of Sawyers and Rivlin[7] on wave
propagation. See also the review article[8] by Rivlin. .

$Note added. After our manuscript was submitted for publication, Professor S. Spector showed us his
manuscript[10) with Simpson. There the much more difficult task of finding necessary and sufficient conditions
for the S-E inequality to hold at an arbitrary deformation F in an isotropic elastic material is solved in the sense
that (4) is shown to be equivalent to at most 12 independent scalar inequalities involving only the components
of 3,T (F). The physical interpretation of 6 of these inequalities remains, however, a difficult open problem. Here,
by considering a much smaller class of strains, we are able to obtain, for a somewhat larger class of materials,
much simpler necessary and sufficient conditions for the S-E inequality to hold.
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and FeD,. It will occasionally be useful to apply some of our general results to the form (7)
and, a fortiori, to isotropic materials.

4. THE B-E* and T-E* INEQUALITIES

The B-E (for Baker-Ericksen) inequalities are well-known and have been much
studiedt in the context of isotropic materials. We now formulate these inequalities for
materials of coaxial type as well as extend and sharpen them for states of strain B that
possess double or triple eigenvalues. Thus, for a given deformation gradient F, let ¢, = e(F),
i =1,2,3, be common orthonormal eigenvectors shared by T(F)} and B, and let f; and B,
be, respectively, their corresponding associated eigenvalues. We will say that the B-E
inequalities hold at F for T() if the greater principal tension at F occurs in the direction
of the greater principal extension at F, i.e. if for each i and j, i #/,

B> B=t.> 1, (8),

or, equivalently, if
bl S0 for g+ B @®)
Bi— B T ?

In terms of those materials of coaxial type given by (7), we see then that the B-E
inequalities hold at F if and only if

M, (F) + (B + B)M(F) > 0

for each f; and B; with B, # ;.

Now, if some 7; equals some ¢; at a deformation F where the B-E inequalities hold, then
it is clear from (8), that §; must equal §; however, as they stand the B-E inequalities assert
nothing in the case that some §, and some f; coincide, as will occur if B has double or
triple eigenvalues. We will show below, however, that for materials of coaxial type ¢, =
whenever f; = §, and then, while the condition (8), suggests little, the form (8), is suggestive
of a limit condition which we now formulate. Indeed, given a sequence {S,} of symmetric
tensors with limit S, we say that {S,} is tame if for each S, there exists orthonormal
eigenvectors e(n) of S,, i = 1,2, 3, such that each of the three sequences {e{n)} has a limit,
say e, as n—o0. Such eigenvectors e(n) of S, will be called regular, and it is easy to verify
that the limit e, of {e,(n)} is an eigenvector of S = lim S,, with a corresponding eigenvalue

n—w
of lime(n)-S,e{n). We will say that a sequence of deformation gradients {F,} with limit
F is tame and proper if the sequence {B,}, B, =F,F,T, with limit B = FFT is tame and if
each B, has distinct eigenvalues.§ For materials of coaxial type it is clear that any tame
and proper sequence {F,} gives rise to three regular, orthonormal eigenvectors e(n) of B,
that are also (regular) eigenvectors of T(F,). If we let 1(n) and B(n) denote the eigenvalues
of, respectively, T(F,) and B, associated with such e,(n), we see that it then makes sense
to say that the B-E* (for strengthened Baker-Ericksen) inequalities hold for T(:) at
a deformation F if, for every tame and proper sequence {F,} tending to F, we have that

 tfm)— tfn)
i B — B

for each i and j, i #j. Since {t(n)} and {B(n)} each have a limit which is an eigenvalue
of, respectively, T(F) and B, it is clear that (9) and (8) are equivalent when

exists and is positive 9)

tSee(l, 2]. .
{Note that, until further notice, we suppress the dependence of T,(-) on the (undistorted) reference «.
§Note that the limit B of {B,} need mot have distinct eigenvalues.
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lim B{n) # lim B(n), and that (9) is consistent with (8) when lim t{n) = lim {{(n). However,
1~ 00

(9)‘ is in general a more stringent condition than (8) since it is meanmgful even when
Bn) — f{n)—0 as n—o0. Indeed, for materials of coaxial type that meet (7), the B-E*
inequalities hold at a deformation F if and only if for each i and j, i #,

M\(F)+ (B, + B)My(F) >0

—regardless of whether f; equals §; or not.t

Proposition 1. For a material of coaxial type, let e,=¢{F), i =1 or 2, be any pair of
orthonormal eigenvectors shared by T(F) and B, and let 1,= t(F) and B, = B(F) be their
corresponding respective eigenvalues. Then,

Bi=B~=~1=1,
and, if the B-E or B-E* inequalities hold at F,

i=14=>p=4,
Moreover, the B-E* inequalities hold at F if and only if

3, T(F)[a®bFl-a®b > 0 (10)

Jor every pair of orthonormal eigenvectors, a and b, shared by T(F) and B.
Upon comparing (4) and (10), we see that Proposition 1 has the following

Corollary. If a material of coaxial type satisfies the S-E inequality at F, it also satisfies the
B-E* inequalities at F.}

Proof: Let F = F(1) be a smooth path of deformations and differentiate T(F)B = BT(F)
with respect to . We thus find that
TB + TB = BT + BT, an

where T = 6, T(F){F], B = FF” + FF7, F is any tensor in the domain D of T(-), and where
F is arbitrary since D is open. Upon taking F = e,®¢fF, we see that B = f(e,®e¢, + ¢,Qe),
and therefore the inner produce of (11) with e,®e; gives that

T'et®ej{ﬂ1 - Bj} = ﬁ/{’t - ’j} (12)

where T = 0,T(F)le,®eF]. It is thus clear that ;= ¢, whenever §,= f,.
Now let {F,} be a tame and proper sequence with limit F and apply (12) at each
deformation F,. We find that

t{n)—tfn) 1
B{n) — B{n)  Bfn)

where 1(n) and {n) are the eigenvalues of, respectively, T(F,) and B, associated with their
shared regular eigenvector &(n), i = 1,2, 3. We sec therefore that

. tn)—tfn) 1
P TE T

OsT(F)&(n)B(n)F ]-&(n)®&(n),

2 TP OLFI QL 13)

tHere, of course, B, and f, are those cigenvalues of B = FF given by the limit as n— oo of the sequences {8/(n)}
and {,(n)}, respectively.
$That S-E = B~E for isotropic materials is well-known (see (1, 2]).
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where & and & are the limits of {&(n)} and {&(n)}, respectively, and are shared orthonormal
cigenvectors of T(F) and B, and where ; is the eigenvalue of B corresponding to &. That
(10) is sufficient for the B-E* inequalities at F is now clear.

To sec that (10) is also necessary for the B-E* inequalities at F, let a, b, and ¢ be
orthonormal cigenvectors of B with f,, 8, and B, as their respective associated eigenvalues.
The sequence {F,} given by

F,={\/B.+ 1/na®a+ /B, + 1/n'b®b + /B, — 1/n*c®c}B~"F,

has a limit of F and, since

B,=F,F,”={(8,+ 1/n)a®a + (B, + 1/n’b®b + (B, + 1/n’)c®c},

{F,} is also tame and proper for n large enough. If we now apply (13) to this sequence
{F,,} we easily see that (10) must hold whenever the B-E* inequalities hold at F.

Finally, we see by (10) and (12) that, if the B-E* inequalities hold at F, then ;=
only if B;=p,. 1

The T-E* (for strengthened tension-extension) inequalities are also well-known in
the context of isotropic elastic materials.} To formulate these inequalities for materials
of coaxial type, consider a deformation state F and let e =e(F) be one of the unit
eigenvectors shared by T(F) and B. Let the material in the state F be subjected to a further
deformation consisting of a simple extension along the direction e of amount a(> — 1)
so that its deformation state is now F(a)=(1+ae®e)F. Since B(a)=
F(a)F(x)" = B+ B(a’ + 2a)e®e, where B = FF” and f is that eigenvalue of B correspond-
ing to e, we see that e will also be an eigenvector of B(a) with (« + 1) as its corresponding
eigenvalue. Moreover, the remaining eigenvalues and eigenvectors of B(x) will be those
remaining to B. It follows therefore that, for a # 0 and small enough, the characteristic
space of B(x) corresponding to B(x + 1)* will just be the line generated by e.} But
B(a){T(F(x))e} = B(a + 1)*{T(F(x))e} since T(F(«)) and B(x) commute, and therefore for
o small enough we conclude that

T(F(x))e = t(a)e,}

where 1(0) = 1 is the eigenvalue of T(F) corresponding to the eigenvector e shared between
T(F) and B. Thus, e is not only an eigenvector of B(a }—it is also an eigenvector of T(F(«))
whenever a is non-zero and small enough, and it is plausible that the associated tension
t(x) =eT(F(x))e increase or decrease as «, the amount of extension, is increased or
decreased. When this holds in the strict sense that(d/da)(a)], ..o > 0 for extensions in each
of the principal directions shared by T(F) and B, we will say that the T-E* inequalities
hold for T(-) at F. Hence, for materials of coaxial type, the T-E* inequalities for T(-) hold
at a deformation F if and only if

-i eT({(1 +ae®e)Fle] =edT(F)le®eFle>0 (14)

dd gm0

for each of the principal directions e shared by T(F) and B. The form taken by (14) for
the materials of coaxial type given by (7) is easy but unenlightening to write down.
Upon comparing (14) to (4) with a®b =e®e, we arrive at once at

Proposition 2. [f a material of coaxial type satisfies the S-E* inequality at F, it also satisfies
the T-E* inequalities at ¥.§

tAgain, see[l, 2]. . .

tIndeed, this will be true for all values of « (small or not) other than those for which B(a + 1)?is an eigenvalue
of B.

§That S-E=>T-E* for isotropic materials is well known (see [1, 2]).
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S. WHEN DOES B-E* AND T-E* =»S-E?

Consider now a material of coaxial type which is in a spherical state of strain B = f1,
B > 0, relative to an undisorted reference configuration. By Proposition 1 the stress T(F)
will also now be spherical, where the associated deformation gradient F is of the form
\/BR,R orthongonal. For a large class materials of coaxial type, including all those which
are isotropic, we now show that at such a state of strain Proposition 2 and the Corollary
to Proposition 1 have as converse that satisfaction of the B-E* and T-E* inequalities at
F implies that the S—E inequality holds at F. Thus, by an easy continuity argument, the
B-E* and T-E* inequalities at deformation F = \/E R, R orthogonal, ensures the strong

ellipticity of T(") in an entire neighborhood of F.
Our demonstration requires that we have a representation of &, T(F)[(-)F] at F = \/BR
for any material of coaxial type. Since T(F) is spherical for such F, we see by (3) that

&TF)WF =0
for all skew tensors W. It only remains therefore to find the form taken by ¢, T(F)[()F],

F= JB R, on the set T of symmetric tensors. To achieve this, let us differentiate (11) with
respect to 7 to find that

1B + 218 + TB = BY + 2BT + BT

for any smooth path F(r). If we evaluate this at 1 =0 on a path F(r) for which
F0)= \/[_JR, R orthogonal, we find that

1B = BT,
since B(0) and T(F(0)) are both spherical, and where T = 4, T(F)[F], B = FF™+ FF7,

F= \/BR and where F is arbitrary. If we now take ¥ =SF, S symmetric, we see that
B = 2f3S and, hence, that

L(S)S=SZ(S) V SeTg, (15)
where £ () is the linear map on T into T given by () = 6, T(F)[(")F}, F= /BR. It can

be shown that (15) implies that the map 2 (') is of the form 2 (S) = 2uS + (4-5)1 for
some number u and some symmetric tensor A. Thus, in any material of coaxial type,

OfT(F)[SF] =2uS + (4-S)1 V SeT,, (16)
wheneverF = \/ER, R orthogonal, and where 4 = u(F)and A = A(F) = A(F)”. We remark
thatif the material is also isotropic then it can also be shown that A must be spherical, 4 = 1.

Now at F = \/ BR every direction is a shared principal direction of T(F) and B. Hence,
by (16) and Proposition 1, the B-E* inequalities will hold at F=,/8R if and only if

O T(F)[a@bFl-a®b=pu >0 17

for every pair of orthonormal vectors, a and b. Similarly, from (16) and (14), we see that
the T-E* inequalities will hold at F= ﬁk if and only if

OsT(F)e@eFle@e=2u + A-e®@e>0 (18)
for every unit vector e, and it is easy to show that this equivalent to the requirement that
2u + A > 0 for each eigenvalue 1 of A. Lastly, by (16) and (5), it is clear that the S-E
inequality will hold at F=ﬁR if and only if

O, T(F)[(a®b + bRa)F]-(a®b + b®a) = 4{u {1 + (a-b)’} + (a-Ab)a'b)} > 0 19

for all unit vectors a and b.
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As we already know (and as is easily verified directly), (17) and (18) are implied by (19).
Under what conditions do (17) and (18) imply (19), i.e. what are necessary and sufficient
conditions on u and 4 for (19) to hold? To formulate such conditions, we note that, in
terms of the symmetric tensor

P = P(b) = 2u(1+b@b) + AbRb +b@Ab,
(19) is the requirement that for each unit vector b
a-Pa> 0 V¥ unit vectors a.

That is, P(b) must be a positive definite tensor for every unit vector b, and we see then
that (19) is the requirement that the eigenvalues of P(b) be positive for every unit
vector b.

Now any vector perpendicular to b and Ab is easily seen to be an eigenvector of P(b)
with an associated eigenvalue of 2u. We thus rediscover the necessity of the condition (17)
if (19) is to hold. Additionally, we see that if Ab is parallel to b, Ab= b for some
(eigenvalue of A) 4, then 2u is a double eigenvalue of P(b), and 2u + 4 =2u + A-b®b is
the remaining eigenvalue of P(b). We have thus also rediscovered the necessity of (18) for
(19). More interesting is the case when b is not an eigenvector of A so that b and Ab are
linearly independent. In this case, beyond the unit eigenvector corresponding to 2y, there
are two orthonormal eigenvectors of P(b) in the plane of b and Ab. The characeristic
equation for the two corresponding eigenvalues, p, and p,, is easily claculated to be

p?— (61 + 2b-Ab)p + 8% + 4ub-Ab + (b-AbY —b- A’ =0,

and, since its roots p, and p, will be positive if and only if p, + p, and p,p, are both
positive, we see that

3u+bAb>0, (20),
and
8u?+4ub-Ab+ (b-Ab) — b4’ > 0, (20),

along with (17) and (18), are the necessary and sufficient conditions that P(b) be positive
definite for every unit vector b.

Now the condition (20), is easily seen to be implied by (17) and (18), and thus it need
be no longer considered. The condition (20),, while derived under the assumption that b
was not an eigenvector of A, is also easily seen to be implied by (17) and (18) in the special
case when b is an eigenvector of 4. Thus (17), (18), and the requirement that

¢ () =8u’+ 4ub'Ab+ BAbY —b 4D >0 ¥3))

for all unit vectors b, are together necessary and sufficient conditions for P(b) to be positive
definite for all unit b, and hence they are necessary and sufficient for the S-E inequality
to hold at F= \/ER, R orthongonal. Moreover, since (17) and (18) imply that ¢(b) is
positive whenever b is an eigenvector of A, to ensure (21) we need only examine the local
minimums of ¢ (-) taken on at unit vectors b that are not eigenvectors of A. 4 fortiori, we
may dispense with (21) altogether if A4 is sphericalt—at any deformation F = JER for
which 4 is spherical, (17) and (18) are by themselves necessary and sufficient for (19), i.e.
S-E at F if and only if B-E* and T-E* at F.

In the more complex case when A has 2 or 3 distinct eigenvalues, an analysis of the

tAs it is in every isotropic material.
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local extrema of ¢(-) via the method of Lagrange multipliers yields the following resuit:
Additional extreme values of ¢(-), beyond those (positive) extrema taken on at the
eigenvectors of A4, occur if and only if some pair, A and Z, of unequal cigenvalues of 4
meets

|A = 1] >4y,

and in this case the corresponding extreme value of ¢(-) is
1
4p2+2u(1+1)—z().—f)2.

Hence, given (17) and (18), the condition (21) will hold if and only if every pair, A and
A, of eigenvalues of A meets

|A—2]<4u or 4p2+2u(1+f)—%().—[’)>0. (22)

We summarize the above discussion in

Proposition 3. In any material of coaxial type and at any deformation F = \//_3 R relative to
an undistorted reference state, R orthogonal, the S-E inequality holds if and only if the B-E *
inequalities, the T-E* inequalities, and (22) hold, where u and A are the material parameters
appearing in the representation (16)

If we view (22) as a material restriction, then we have the following

Corollary. For all materials of coaxial type for which (22) holds at F = \/BR, the S-E
inequality holds at F if and only if the B-E* and T-E* inequalities hold at F. Isotropic
materials are included as a special case.

6. APPLICATIONS

Here 1 apply the ideas of the last two sections to some problems suggested by recent
work of Truesdell and Moon (3], Varley and Day(4), and of Batra[5).

Let the material at some particle X e be elastic and of coaxial type, and let x be one
of its undistorted configurations. Let R be a second configuration of # such that in 8 the
stress system at X is spherical, T = 1, and let F be the gradient at X of the deformation
from x to R. If T, () satisfies either the B-E or B-E* inequalities at F, then R is also an
undistorted configuration at X.t Indeed, to see this we need only note that, since T, (F) = 71
is spherical, Proposition 1 tells us that it is necessary for B= FFET to also be spherical,
B = B1, since T.(") satisfies either the B-E or B-E* inequalities at . Hence, £ = /AR for
some orthogonal tensor R, and, since T,") = T ((")F), it is now clear that (6) will hold for
K as well as x.

The above simple remarks also show that a spherical state of stress at a deformation F for which the strain
B = FFT is not spherical is possible only if the B-E and B-E * inequalities fail at F. A fortiori, the strong ellipticity
of T,(-) must also (ail at such an F. To the extent then the strong ellipticity is a “stability” criterion, we may
thus asscrt that non-spherical states of strain B at which the stress is spherical are always “unstable™ in any
material of coaxial type. The cxistence, if not the stability, of such states was considered by Varley and Day in[4].

In[3] Truesdell and Moon studied conditions under which an isotropic material, in
particular, would have a “semi-invertible” stress—strain relation. It is a simple gener-
alization of their idea to say that a material of coaxial type of the form given in (7) has
a semi-invertible response function T,(-) at F if there exists H,= H(F), i = 1, 2, 3, such that

B = H{F)1 + H,(F)T + H,(F)T?, (23)
where T, F, and B( = FF7) satisfy (7). As Truesdell and Moon remarked, even in isotropic

tSec Truesdell and Moon ([3], p. 189).
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materials the B-E inequalities do not in general suffice for T,(') to be semi-invertible at
a given F unless the cigenvalues of B = FFT arc distinct. We now show that, if the response
Sunction T (-) for a material of coaxial type is as in (7), then T,(') is semi-invertible at any
deformation F at which the B-E* inequalities hold.

Indeed, by a simple calculation and use of the Cayley-Hamilton thcorem, one can show
that (7) implies that

T2=rol+r|B+r232s
where
T, =To(F) = M2 + III{2M M, + IM?},

T, = [\(F) = 2MM, + IIIM? — IT{2M M, + IM 2},
I, =,(F) = M + 2MM, — IIM? + [{2M,M, + IM}},

where M, = M(F), and where I, II, and III are, respectively, the first, second, and third
principal invariants of B. We see therefore that for arbitrary numbers H, i =1,2,3,
Hyl + HT + H,T* = Hyl + H{M,1+ M\B + M,B’} + H,{I',1 + T'\B + I',B?},
= {Ho + HXMO + Hzro}l + {HlM] + HZFI}B + {Hle + Hzrz}Bz.

If we compare this last with (23), we see that T,(-) will be semi-invertible at F if we can
find H,= H(F) satisfying the system

1 M, T\/H)\ [0
o M, r\H\|=(1]
0 M, IJ\H,] \o

(24)

An analysis of the system (24), using the form of the I';, shows that (24) has a solution
if and only if the determinant of its matrix of coefficients, 4 = A(F)= M, I, — M,I', is
non-zero, and then, of course, that solution is unique and is easily seen to be given by

M,Fy— M,

Ho=”o(F)="2—o‘A—"°—2,
I,

HI‘HI(F)__A'a

-M
H,= HyF) = y 2

Moreover, a straightforward calculation shows that the determinant 4 can be written as
A =A(F)=M]r2—‘M2r|
= M13 + 21M|2M2 + {]1 -+ 12}M|M22 + {I II - III}MZB,
= {MI + (B + ﬁ2)M2}{MI + B+ ﬁ:)Mz}{Ml + (B + ﬂn)Mz},

where f,, B, and B are the three eigenvalues of B = FF’. Since, for materials of the type
(7), the B-E* inequalities for T,(:) at F are exactly the requirement that

M\(F)+ (B, + B)My(F)>0 ¥ i and j, i #}.

we see that the B-E* inequalities at F suffice to ensure that 4(F) # 0, and hence, as
claimed, they are sufficient to guarantee the semi-invertibility at F of any response function
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T,() of the form (7). Trivially, the strong ellipticity at F of T,(-) ensures the semi-
invertibility of T,(:) at F.

That even strong ellipticity does not suffice for the invertibility of a general stress—strain relation may be seen
by considering the isotropic elastic material for which T,(F) = / ~'B where I = rB. 1t is straightforward to verify
that this material obeys the B-E (indeed, even the B-E*) and T-E* inequalities at every deformation F. By
Proposition 3, it then follows that T,(-) is strongly elliptic in a neighborhood of every F = aR, R orthogonal and
o positive. Nevertheless, while T,(-) is trivially semi-invertible at every deformation F, it is impossible to express
B as a function of T alone, since the entire ray of strains B(s) = sB', s > 0 and B' fixed, positive definite, and
symmetric, is mapped by T,(-) onto the same fixed tensor T' = (1 B")~'B' of unit trace.

Finally, consider the result of Batra[5] who showed that in any isotropic material a
simple tension produces a simple extension at any deformation for which the E (for
empirical ) inequalitiest hold. This result may be extended at once to materials of coaxial
type and to deformations at which merely the B-E or B-E* inequalities hold.} Indeed,
if F corresponds to a state of simple tension of amount T # 0, then T, (F) = Te®e for some
unit vector e. Since B = FF” commutes with T,(F), it now follows easily the e must be an
eigenvector of B, and so, by the spectral theorem,

B=fe®e + SIQf + fg®g,

for an orthonormal eigenbasis {e, f, g} of B and a triad of corresponding eigenvalues {f,
B, B}. Now suppose that the B-E or the B-E* inequalities hold at F. Then, since f and
g are also eigenvectors of T,(F) with common eigenvalue (equal to zero), Proposition 1
tells us that it is necessary that f equal g, and so

B=fe®e + p{IRf + g®g}

is a simple extension as claimed. Further, we still have the residual inequality that
(T —0)B — B) > 0if § # B. By Proposition 1, § = § is impossible unless T* = 0; we thus
see that T > 0 (tensile loading)=f§ > B, while T <0 (compressible loading)= f < 8.
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w N

1See{l, 2] for a discussion of these incqualitics. Here I only note that, in addition to implying the B-E
inequalities (which is well-known), they also imply the B-E* inequalities.

$Note added. After our manuscript was completed, Prof. Batra pointed out to us that it was observed in
his note[11] that his results in[5] for isotropic materials followed if just the B-E inequalities held at F.



